X

ZHIYISB&

NAV

ZHIYISES

ESP32 WIFI IOT tutorial

202102025V1.0

Ay

ZHIYIBE

List

o "
" =

&, 7

R .

m @2

i Tw2

—— o o o e A e e e e e e e

5V 2-CHANNEL
RELAY MODULE
ESP32 ESP-325
WIFIBOARD

Ay

ZHIYIBE

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

_______;%_______
t‘é‘

LED BLUE/WHITE/

RED/YELLOW

HC-SR501 PIR
SENSOR MODULE
(BPCS/EACH)

NAZ

ZHIYIBE

12*12 WITH
YELLOW KEYCAP
2X5PCS

BUTTON SWITCH

T

/

NAVY

ZHIYIBE

En 29
.,
§3 8y

ZHIYIBE
Preface
Lesson O Installing the ESP32 Board in Arduino IDE..........cccooooiieeiiniieeeeeeeene 7
Lesson 1 Telegram: Control ESP32 OULPULS oo e 16
Lesson 2 ESP32: Control Outputs with Web Server and a Physical Button Simultaneously 38
Lesson 3Telegram: ESP32 Motion Detection with Notifications..........cccocvevveeeennnnnnne. 56
Lesson 4 Use ESP32 with DHT11 temperature and humidity sensor modulecccccccoeieennnen. 64
Lesson 5 Using ESP32 to control ssd1306 OLED diSplayceeeeeeeeeiieiniieeieeeeeeeee e 69
Lesson 6 How to use ESP32 to control a relay moduleccccccoiiiiniiiiniiiiiiecccceeeee 73
Lesson 7 How to use IR obstacle avoidance sensor on ESP32cccciviiriiiiiiineenicnieciecnecneee 88
Lesson 8 How to use a photoresistor sensor on ESP32 ... 92

X

ZHIYIS8E

Lesson 0 Installing the ESP32 Board in Arduino IDE

There’s an add-on for the Arduino IDE that allows you to program the ESP32 using
the Arduino IDE and its programming language. In this tutorial we’ll show you how to
install the ESP32 board in Arduino IDE whether you’re using Windows, Mac OS X or
Linux.

Install Arduino IDE

Before starting this installation process, please make sure you have installed the
latest version of Arduino IDE on your computer. If not, please uninstall and reinstall.
Otherwise, it may not work.

Install the latest Arduino IDE software from arduino.cc/en/Main/Software, continue
this tutorial.

Installing ESP32 Add-on in Arduino IDE

To install the ESP32 board in your Arduino IDE, follow these next instructions:

1. Inyour Arduino IDE, go to File> Preferences

-’5:2" ESP32_data_logging | Arduino 1.
File Edit Sketch Tools Help

MNew Ctrl+N

Open... Ctrl+0

Open Recent ’
Sketchbook ’
Examples ’
Close Ctrl+W

Save Ctrl+S

Save As... Ctrl+Shift+5S
Page Setup Ctrl+Shift+P
Print Ctrl+P
Preferences Ctrl+Comma
Quit Ctrl+Q

ZHIYIS8E

2. Enter https://dl.espressif.com/dl/package_esp32_index.json into the “Additional
Board Manager URLs” field as shown in the figure below. Then, click the “OK” button:

Preferences b

Settings Network

Sketchbook location:

C:\WUsers\ruisantos\Documents\Arduing| Browse
Editor language: System Default ~ | (requires restart of Arduina)

Editor font size: 17

Interface scale: Automatic | 100 5 % (requires restart of Arduino)

Show werbose output during: [compilation [] upload

Compiler warnings: MNone «

[] Display line numbers

[] Enable Code Folding

Verify code after upload

[] Use external editor

Aggressively cache compiled core

Check for updates on startup

Update sketch files to new extension on save (.pde -= .ino)
Save when verifying or uploading

Additional Boards Manager URLs: l‘uttps:,‘,‘dl.espressif.com;‘dl,‘pad(age_esp32_index.json. http: farduino, espa 266, com/stable fpackage_e I ﬁ

More preferences can be edited directly in the file

C:\WsersYruisantos\appDataiLocal\Arduino 15\preferences. et

{edit only when Arduino is net running)

I oK I Cancel

Note: if you already have the ESP8266 boards URL, you can separate the URLs with

a comma as follows:
https://dl.espressif.com/dl/package_esp32_index.json,
http://arduino.esp8266.com/stable/package_esp8266com_index.json

ZHIYISBEE
3. Open the Boards Manager. Go to Tools > Board > Boards Manager...
Help
Auto Format Ctrl+T
Archive Sketch
AR hes Fix Encoding & Reload
Serial Monitor Cirl+Shifts M =
. . I Boards Manager... I
Serial Plotter Ctrl+Shift+L
¥4 Arduino AVE Boards
WiFi101 Firmware Updater Arduino Yiin
I Board: "Arduino/Genuino Uno" I ; @ Arduino/Genuino Uno

Port Arduino Duemilanove or Diecimila
'j"f L Get Beard Info Arduina Nano
#include Arduino/Genuino Mega or Mega 2560

Programmen "AVRISP mkll" ;

#include Arduino Mega ADK
Burn Bootloader Arduine Leonardo

#include <OneWire.h> e

< Arduino/Genuino Micro

Arduino Esplora
Arduino Mini
Arduino Ethernet
Arduino Fio
Arduine BT

LilyPad Arduino USE
LilyPad Arduinc

Arduino Pro or Pro Mini

Arduino NG or older

4. Search for ESP32 and press install button for the “ESP32 by Espressif Systems*:

-

£2 Boards Manager X
roe i El
esp32 by Espressif Systems o

Boards included in this package:
ESP32 Dev Module, WEMOS LoLin32.
Mare info

Installing. .. I

y

[l INEL e Rals < (3/3). Downloaded 30,228kb of 125,715b.

A

ZHIY 88

5. That’s it. It should be installed after a few seconds.

ED Boards Manager X

Type Al w | |esp32

esp32 by Espressif Systems version 1.0.2 INSTALLED ~
Boards included in this package:

ESP32 Dev Module, WEMOS LolLin32.

More info

Select version Install Remove

Close

Testing the Installation

Plug the ESP32 board to your computer. With your Arduino IDE open, follow these
steps:

1. Select your Board in Tools > Board menu (in my case it’s the DOIT ESP32 DEVKIT
V1)

File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
sketch_dec12 Fix Encoding & Reload
1 void s Serial Monitor Ctrl+Shift+M
2 // p Serial Plotter Ctrl+Shift+L 1n once:
- } WiFi101 Firmware Updater
5 Board: "DOIT ESP32 DEVKIT V1" : A
5 void 1 Flash Frequency: “20MHz" Adafruit ESP32 Feather
11 1/ p Upload Speed: "921600" NodeMCU, 325
B Core Debug Levek: "None" MH ET LIVE ESP32DevKIT
9} Port: "COM4" MH ET LIVE ESP32MiniKit
Get Board Info ESP32vn loT Uno
. DOITESP32 DEVKIT V1 |
Programmer; “AVRISP mkll® OLIMEX ESP32-EVB
LErLEsiesis OLIMEX ESP32-GATEWAY
ThaiEasyElec's ESPino32
M5Stack-Core-ESP32
Heltec_WIFI_Kit_32
Heltec_WIFI_LoRa_32
ESPectro32
Microduino-CoreESP32

10

A

ZHIYISBE

2. Select the Port (if you don’t see the COM Port in your Arduino IDE, you need to
install the CP210x USB to UART Bridge VCP Drivers):

File Edit Sk

Blink_sketch

ch Tools Help

5// le

6 const

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Senal Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WiFi101 Firmware Updater

Board: "DOIT ESP32 DEVKIT V1"
Flash Frequency: "80MHz"
Upload Speed: "921600"

3. Open the following example under File > Examples > WiFi (ESP32) > WiFiScan

File Edit Sketch Tools Help

Mew Ctrl+N

Open... Ctrl+0

Open Recent »

Sketchbook

s & lce:

Close Ctrl+W Esp32 »

Save Cirl+$S ESP32 BLE Arduino >

Save Ase Cirl+ShiftS ESPmDNS B
HTTPClient »

Page Setup Ctrl+5hift«P Preferences N

Print Ctrl+P SD(esp32) ,peatedly:

Preferences Ctri+Comma SP‘MMC ’
SimpleBLE »

Quit Cirl+Q SPIFFS >
Update >
WiFi ETH_LANST20
WiFiClientSecure ETH_TLK110
Examples from Custom Libraries SimpleWiFiServer
Adafruit [LI19341 WiFiBlueTocthSwitch
Adafruit MeoPixel WiFiClient
Adafruit SSD1306 WiFiClientBasic
Arduinalson WiFiClientEvents

DallasTemperature

WiFiClientStaticlP

DHT sensor library WiFilPv6

Embedis WiFiMulti

ESP Async WebServer WiFiSmartConfig
ESP AsyncTCP WiFiTelnetToSerial
ESPE266 and ESP32 Oled Driver for 5 WIiFIUDPClient
ESPB266 Weather Station Sj WPS

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

4. A new sketch opens in your Arduino IDE:

File Edit Sketch Tools Help

DOIT ESP32 DEVKIT W1, BOMH; 800, None on COMS

5. Press the Upload button in the Arduino IDE. Wait a few seconds while the code
compiles and uploads to your board.

If everything went as expected, you should see a “Done uploading.” message.

12

X

ZHIYIS8E

7+ Open the Arduino IDE Serial Monitor at a baud rate of 115200:

8. Press the ESP32 on-board Enable button and you should see the networks
available near your ESP32:

€ comd - O x

| Send

scan done

2 networks found

1l: MEO-620B4ER (—49)*
2: MEO-WiFi (-50)

scan start

scan done

2 networks found

1: MEO-620B4B (—48)*
2: MEO-WiFi (-49)

Autoscroll BothML &CR « | | 115200 baud Clear output

Troubleshooting

If you try to upload a new sketch to your ESP32 and you get this error message “A
fatal error occurred: Failed to connect to ESP32: Timed out... Connecting...”. It means
that your ESP32 is not in flashing/uploading mode.

Having the right board name and COM por selected, follow these steps:

= Hold-down the “BOOT” button in your ESP32 board

13

Press the “Upload” button in the Arduino IDE to upload your sketch:

o

= After you see the “Connecting...” message in your Arduino IDE, release the
finger from the “BOOT” button:

= After that, you should see the “Done uploading” message
= That’s it. Your ESP32 should have the new sketch running. Press the “ENABLE”
button to restart the ESP32 and run the new uploaded sketch.

= You'll also have to repeat that button sequence every time you want to
upload a new sketch.

14

X

ZHIYIS8E

ESP32 Peripherals

The ESP32 peripherals include:

18 Analog-to-Digital Converter (ADC) channels

3 SPlinterfaces

3 UART interfaces

2 12C interfaces

16 PWM output channels

2 Digital-to-Analog Converters (DAC)

2 12S interfaces

10 Capacitive sensing GPIOs

The ADC (analog to digital converter) and DAC (digital to analog converter) features
are assigned to specific static pins. However, you can decide which pins are UART, 12C,
SPI, PWM, etc — you just need to assign them in the code. This is possible due to the
ESP32 chip’s multiplexing feature.

Although you can define the pins properties on the software, there are pins assigned
by default as shown in the following figure .

PIN DEFINITION www.ai-thinker.com

- GND
&)

(roucws —{aoca —{ epo32 |
(rouchs —{aocs | p1o33]

GPIO25

[}

ND

ADC18

ADC19 GPIO26

(roucws }—{aoc17 —{ep1o27)
(roucks }—{ apcie }—{epro12 |
(rouers }—{ ancas]—[GPIOH] cproa |—{wocie J—{toucra |

GND GPIO@]—[AD[M]—[TOUCHl]

o o | [& o [}
o o | |e o el
= =N = =
o o | |o o o
=3 B | |& =4 =
o ~ c o

w— GPIO13 GPIO2]—[ADClZ]—[TOUCHZ]
GPIO10
GPIO11 CMD SDo

VIN 5V sv CLK
@ Nocericu-a2s

15

X

ZHIYIS8E

Lesson 1 Telegram: Control ESP32 Outputs

This guide shows how to control the ESP32 or ESP8266 NodeMCU GPIOs
from anywhere in the world using Telegram. As an example, we’ll control
an LED, but you can control any other output. You just need to send a
message to your Telegram Bot to set your outputs HIGH or LOW. The ESP

boards will be programmed using Arduino IDE.

-
-
-
-
" -
-
o
= .
-
-
-
= -

Project Overview:
In this tutorial we’ll build a simple project that allows you to control
ESP32 or ESP8266 NodeMCU GPIOs using Telegram. You can also control

a relay module.

16

LED state set to OFF

CEEEEEEE
&
S
AARARARAR"

b 4§
T
(]

Welcome, Sara
Use the following commands to control
your outputs.

Welcome message

on to turn GPIO ON
ed_off to turn GP10 OFF
tate to request current GPIO state

o
()

LED state set to ON

LED is ON

LED state set 10 OFF

LED is OFF Return LED state

You’ll create a Telegram bot for your ESP32/ESP8266 board;

You can start a conversation with the bot;

When you send the message /led_on to the bot, the ESP board receives the message
and turns GPIO 2 on;

Similarly, when you send the message /led_off, it turns GPIO 2 off;

Additionally, you can also send the message /state to request the current GPIO state.
When the ESP receives that message, the bot responds with the current GPIO state;
You can send the /start message to receive a welcome message with the commands
to control the board.

This is a simple project, but shows how you can use Telegram in your loT and Home

Automation projects. The idea is to apply the concepts learned in your own projects.

17

X

ZHIYIS8E

Introducing Telegram:

Telegram Messenger is a cloud-based instant messaging and voice over IP service.
You can easily install it in your smartphone (Android and iPhone) or computer (PC,
Mac and Linux). It is free and without any ads. Telegram allows you to create bots
that you can interact with.

“Bots are third-party applications that run inside Telegram. Users can interact with
bots by sending them messages, commands and inline requests. You control your
bots using HTTPS requests to Telegram Bot API”.

The ESP32/ESP8266 will interact with the Telegram bot to receive and handle the
messages, and send responses. In this tutorial you'll learn how to use Telegram to
send messages to your bot to control the ESP outputs from anywhere (you just need
Telegram and access to the internet).

Creating a Telegram Bot:

Go to Google Play or App Store, download and install Telegram.

é

Telegram
Telegram FZ-LLC

18

https://telegram.org/

X

ZHIYIS8E

Open Telegram and follow the next steps to create a Telegram Bot. First,
search for “botfather” and click the BotFather as shown below. Or open

this link t.me/botfather in your smartphone.

Global search

The following window should open and you’ll be prompted to click the start button.

< g;% E;:tFather

What can this bot do?

BotFather is the one bot to rule
them all. Use it to create new bot
accounts and manage your
existing bots.

About Telegram bots:
hitps.//core.telegram.org/bots
Bot APl manual;

https://core telegram.org/bots/ap

Contact @BotSupport if you have
questions about the Bot API,

I /start

| can help you create and manage
Telegram bots. If you're new to the Bot
AP, please see the manual,

You can control me by sending these
commands:

'newbot - create a new bot
mybots - edit your bots [beta]

19

https://t.me/botfather

X

ZHIYIS8E

Type /newbot and follow the instructions to create your bot. Give it a name and
username.

‘newbot A

Alright, a new bot. How are we going to

call it? Please choose a name for your
bot.

Good. Now let's choose a username for
your bot. It must end in "bot’. Like this,
for example: TetrisBot or tetris_bot.

If your bot is successfully created, you’ll receive a message with a link to access the
bot and the bot token. Save the bot token because you’ll need it so that the

ESP32/ESP8266 can interact with the bot.

(h BotFather

bot

Done! Congratulation
You will find it a _
You can now add a description, abou
section and profile picture for your bot,
see /help for a list of commands. By
the way, when you've finished creating
your cool bot, ping our Bot Support if
you want a better username for it. Just
make sure the bot is fully operational
before you do this.

safely, it can be used by anyone to
control your bot.

For a description of the Bot API, see
this page: https.//core.telegram.org
/bots/api

20

YA

ZHIYIS8E

Get Your Telegram User ID

Anyone that knows your bot username can interact with it. To make sure that we
ignore messages that are not from our Telegram account (or any authorized users),
you can get your Telegram User ID. Then, when your telegram bot receives a message,
the ESP can check whether the sender ID corresponds to your User ID and handle the
message or ignore it.

In your Telegram account, search for “IDBot” or open this link t.me/myidbot in your

smartphone.

IDBot

Start a conversation with that bot and type /getid. You will get a reply back with your
user ID. Save that user ID, because you’ll need it later in this tutorial.

best bots @@ on Telegram. Explore
charts, rate bois and enjoy updates!

StoreBot.me

Jgetid

Sara Santos
fgetid
10 3449
—————

21

https://t.me/myidbot

ZHIYIS8E

Universal Telegram Bot Library :

To interact with the Telegram bot, we’ll use the Universal Telegram Bot
Library created by Brian Lough that provides an easy interface for the Telegram Bot
API.

Follow the next steps to install the latest release of the library.

Click here to download the Universal Arduino Telegram Bot library.

Go to Sketch > Include Library > Add.ZIP Library...

Add the library you’ve just downloaded.

And that’s it. The library is installed.
Important: don’t install the library through the Arduino Library Manager because

it might install a deprecated version.

For all the details about the library, take a look at the Universal Arduino Telegram Bot
Library GitHub page.

Arduinolson Library

You also have to install the Arduinolson library. Follow the next steps to install the
library.

Go to Skech > Include Library > Manage Libraries.

Search for “ArduinoJson”.

Install the library.

We're using ArduinolJson library version 6.15.2.

C Library Manager 4
Type Al v Topc Al w | | ArduinoJson
Arduinolson i INSTALLED A

A simple and efficient 1SON library for embeddes LT 1. Mroumolson supports ¥ serialization, « deserialization, v MessagePack,
o fixed allocation, v zerc-copy, ¥ streams, filtering, and more. It is the most popular Arduing library on GitHub *eeee
Chack out arduincjson.org for 8 comprahensive documantation.

More info

clouddrpi-esp-arduino

Connect a board to the Cloud4RPi control panel using MQTT - hittps:/ / cloud4rpi.bo. Cloud4RPi cdient library for ESPE266 and ESP32
based boards. Dependencies: Arduinalson, PubSubClient

Morae info

Constellation L

Arduine /ESP library for Constellation 1.8 Arduine/ESP library for Constellation 1.8. This library use the Arduine JSON library
{https://github.com/bblanchon/Arduinalson) (wersion 5.x) to encode & decode JSON.

More infg

CTBot by Stefano Ledda
Simple Arduino Telegram BOT library for ESP8266 A simple, easy to use and strightforeard Arduino library for using Telegram

Close

22

https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot
https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot
https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot/archive/master.zip
https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot
https://github.com/bblanchon

<

ZHIYIS8E

Control Outputs using Telegram — ESP32/ESP8266 Sketch:
The following code allows you to control your ESP32 or ESP8266
NodeMCU GPIOs by sending messages to a Telegram Bot. To make it
work for you, you need to insert your network credentials (SSID and
password), the Telegram Bot Token and your Telegram User ID.
Code:
#ifdef ESP32

#include <WiFi.h>
#else

#include <ESP8266WiFi.h>
#endif
#include <WiFiClientSecure.h>
#include <UniversalTelegramBot.h> // Universal Telegram Bot Library
written by Brian Lough:
https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot

#include <Arduinolson.h>

// Replace with your network credentials
const char® ssid = "xxxx";

const char® password = "XXXXXXXXXXXX";

// Initialize Telegram BOT

23

X

ZHIYIS8E

#Hdefine BOTtoken "XXXXXXXXX:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "

// your Bot Token (Get from Botfather)

// Use @myidbot to find out the chat ID of an individual or a group
// Also note that you need to click "start" on a bot before it can
// message you

#define CHAT_ID "1461852131"

WiFiClientSecure client;

UniversalTelegramBot bot(BOTtoken, client);

// Checks for new messages every 1 second.
int botRequestDelay = 1000;

unsigned long lastTimeBotRan;

const int ledPin =2;

bool ledState = LOW,

// Handle what happens when you receive new messages
void handleNewMessages(int numNewMessages) {
Serial.printIn("handleNewMessages");

Serial.printIn(String(numNewMessages));

24

X

ZHIYIS8E

for (int i=0; iknumNewMessages; i++) {

// Chat id of the requester
String chat_id = String(bot.messages[i].chat_id);
if (chat_id != CHAT_ID){
bot.sendMessage(chat_id, "Unauthorized user", "");

continue;

// Print the received message
String text = bot.messages|i].text;

Serial.printIn(text);

String from_name = bot.messages[i].from_name;

if (text =="/start") {

String welcome = "Welcome, " + from_name + ".\n";

welcome += "Use the following commands to control your

outputs.\n\n";

welcome +="/led_on to turn GPIO ON \n";
welcome += "/led_off to turn GPIO OFF \n";

welcome += "/state to request current GPIO state \n";

25

X

ZHIYIS8E

bot.sendMessage(chat_id, welcome, "");

if (text =="/led_on") {
bot.sendMessage(chat_id, "LED state set to ON", "");
ledState = HIGH;

digitalWrite(ledPin, ledState);

if (text =="/led_off") {
bot.sendMessage(chat_id, "LED state set to OFF", "");
ledState = LOW;

digitalWrite(ledPin, ledState);

if (text == "/state") {
if (digitalRead(ledPin)){
bot.sendMessage(chat_id, "LED is ON", "");
}
else{

bot.sendMessage(chat_id, "LED is OFF", "");

26

X

ZHIYIS8E

void setup() {

Serial.begin(115200);

#ifdef ESP32
client.setlnsecure();

#endif

pinMode(ledPin, OUTPUT);

digitalWrite(ledPin, ledState);

// Connect to Wi-Fi
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.printIn("Connecting to WiFi..");

}

// Print ESP32 Local IP Address

27

X

ZHIYIS8E

Serial.printin(WiFi.locallP());

void loop() {
if (millis() > lastTimeBotRan + botRequestDelay) {
int numNewMessages = bot.getUpdates(bot.last_message_received

+2);

while(numNewMessages) {
Serial.printIn("got response");
handleNewMessages(numNewMessages);
numNewMessages = bot.getUpdates(bot.last_message received
+2);
}

lastTimeBotRan = millis();

28

Sk

ZH1YI

How the Code Works:

This sections explain how the code works.
Start by importing the required libraries.

#ifdef ESP32

#include <WiFi.h>#else

#include <ESP8266WiFi.h>
#tendif#include <WiFiClientSecure.h>
#include <UniversalTelegramBot.h>
#include <ArduinoJson.h>

Network Credentials
Insert your network credentials in the following variables.

const char* ssid = "REPLACE_WITH_YOUR_SSID"
const char* password = "REPLACE_WITH_YOUR_PASSWORD"
Define Output

Set the GPIO you want to control. In our case, we'll control GPIO 2 (built-in LED) and
its state is LOW by default.

const int ledPin = 2

bool ledState = LOW

Note: if you’re using an ESP8266, the built-in LED works with inverted logic. So, you
should send a LOW signal to turn the LED on and a HIGH signal to turn it off.

Telegram Bot Token
Insert your Telegram Bot token you’ve got from Botfather on the BOTtoken variable.

#define BOTtoken "XXXXXXXXXX : XXXXXXXXXXXXXXKXKKXXXXXXXXXXXXXXXXXX™ //
your Bot Token (Get from Botfather)

29

ZH1YI

Sk

]

Telegram User ID
Insert your chat ID. The one you’ve got from the IDBot.

#define CHAT_ID "XXXXXXXXXX"

Create a new WiFi client with WiFiClientSecure.

WiFiClientSecure client

Create a bot with the token and client defined earlier.

UniversalTelegramBot bot(BOTtoken, client

The botRequestDelay and lastTimeBotRan are used to check for new Telegram
messages every x number of seconds. In this case, the code will check for new
messages every second (1000 milliseconds). You can change that delay time in the

botRequestDelay variable.

int botRequestDelay = 1000

unsigned long lastTimeBotRan

handleNewMessages|()
The handleNewMessages() function handles what happens when new messages

arrive.

void handleNewMessages(int numNewMessages
Serial.println("handleNewMessages"
Serial.println(String(numNewMessages

It checks the available messages:

for (int i=0; i<numNewMessages; i++

30

X

ZHIYIS8E

Get the chat ID for that particular message and store it in the chat_id variable. The
chat ID allows us to identify who sent the message.

String chat_id = String(bot.messages|i]|.chat_id

If the chat_id is different from your chat ID (CHAT _ID), it means that someone (that is
not you) has sent a message to your bot. If that’s the case, ignore the message and
wait for the next message.

if (chat_id != CHAT_ID

bot.sendMessage(chat_id, "Unauthorized user"

continue

Otherwise, it means that the message was sent from a valid user, so we’'ll save it in

the text variable and check its content.

String text = bot.messages[i].text

Serial.println(text

The from_name variable saves the name of the sender.

String from_name = bot.messages|[i]|.from_name

If it receives the /start message, we’ll send the valid commands to control the
ESP32/ESP8266. This is useful if you happen to forget what are the commands to
control your board.

if (text == "/start"

String welcome = "Welcome, + from_name + ".\n"
welcome += "Use the following commands to control your outputs.\n\n"

welcome += "/led on to turn GPIO ON \n"

31

ZH1YI

Sk

m)ﬂ

welcome += "/led off to turn GPIO OFF \n"
welcome += "/state to request current GPIO state \n"

bot.sendMessage(chat_id, welcome

Sending a message to the bot is very simply. You just need to use the sendMessage()
method on the bot object and pass as arguments the recipient’s chat ID, the message,
and the parse mode.

bool sendMessage(String chat_id, String text, String parse_mode =

In our particular example, we’ll send the message to the ID stored on the chat_id
variable (that corresponds to the person who’ve sent the message) and send the

message saved on the welcome variable.

bot.sendMessage(chat_id, welcome

If it receives the /led_on message, turn the LED on and send a message confirming

we’ve received the message. Also, update the ledState variable with the new state.

if (text == "/led_on"
bot.sendMessage(chat_id, "LED state set to ON", ""
ledState = HIGH
digitalWrite(ledPin, ledState

Do something similar for the /led_off message.

if (text == "/led off"
bot.sendMessage(chat_id, "LED state set to OFF", ""
ledState = LOW

digitalWrite(ledPin, ledState

32

X

ZHIYIS8E

Note: if you’re using an ESP8266, the built-in LED works with inverted logic. So, you

should send a LOW signal to turn the LED on and a HIGH signal to turn it off.

Finally, if the received message is /state, check the current GPIO state and send a
message accordingly.

if (text == "/state"
if (digitalRead(ledPin

bot.sendMessage(chat_id, "LED is ON", ""

else

bot.sendMessage(chat_id, "LED is OFF", ™"

setup()

In the setup(), initialize the Serial Monitor.

Serial.begin(115200

If you’re using the ESP8266, you need to use the following line:

#tifdef ESP8266
client.setInsecure

#tendif
In the library examples for the ESP8266 they say: “This is the simplest way of getting
this working. If you are passing sensitive information, or controlling something

important, please either use certStore or at least client.setFingerPrint”

Set the LED as an output and set it to LOW when the ESP first starts:

33

ZH1YI

Sk

pinMode(ledPin, OUTPUT
digitalWrite(ledPin, ledState
Init Wi-Fi

Initialize Wi-Fi and connect the ESP to your local network with the SSID and password
defined earlier.

WiFi.mode(WIFI_STA

WiFi.begin(ssid, password);while (WiFi.status I'= WL_CONNECTED

delay(1000

Serial.println("Connecting to WiFi.."

loop()
In the loop(), check for new messages every second.

void loop
if (millis > lastTimeBotRan + botRequestDelay

int numNewMessages = bot.getUpdates(bot.last message received + 1

while(numNewMessages

Serial.println("got response”

handleNewMessages (numNewMessages

numNewMessages = bot.getUpdates(bot.last _message received + 1

lastTimeBotRan = millis

34

X

ZHIYIS8E

When a new message arrives, call the handleNewMessages function.

while(numNewMessages) {
Serial.println("got response");
handleNewMessages (numNewMessages) ;

numNewMessages = bot.getUpdates(bot.last message received + 1);}

That’s pretty much how the code works.

Demonstration:

Upload the code to your ESP32 or ESP8266 board. Don’t forget to go to Tools > Board
and select the board you’re using. Go to Tools > Port and select the COM port your
board is connected to.

After uploading the code, press the ESP32/ESP8266 on-board EN/RST button so that
it starts running the code. Then, you can open the Serial Monitor to check what’s
happening in the background.

Auto Format Ctrl+T
Archive Sketch
Fix Encoding & Reload

35

LessoniTelzgr|
58 Manage Libraries... Ctrl+Shift+l \n";
5 g Serial Monitor Ctrl+Shife+M
o Serial Plotter Ctrl+Shift+L
60 }
61 WiFi101 / WiFININA Firmware Updater e
L X ® ESP32 Dev Module
o= = Board: "ESP32 Dev Module® ey R vy s Boards Manager...
63 Upload Speed: "T15200 ESP32 Pico Kit Arduino AVR Boards >
64 CPU Frequency: "240MHz (WiFi/BT)" TinyPICO Arduino megaAVR Boards »
65 Flash Frequency: "80MHz" 5.0D1 Ultra v1 Arduino SAMD (32-bits ARM Cortex-M0+) Beta Boards >
66 } Flash Mode: Q10" MagicBit i _hits ARM Cortex-M0+) Boards >
67 Flash Size: "4MB (32Mb)" Turta loT Node ESP32 Arduino »
o i Partition Scheme: "Default 4MB with spiffs (1.2 TTGO LoRa22-OLED V1 ards (2.7.4) »
68 1
Core Debug Level: "None” TGO T1 Industruino SAMD (32-bits ARM Cortex-M0+) Boards >
69 - - .
o PSRAM: "Disabled TTGO T7 V1.3 Minia2 MightyCore >
(e Bl TTGO T7 V1.4 Mini32 MiniCore >
71 Get Board Info XinaBox CW02 Sanguino-avr >
72 } Fregamer SparkFun ESP32 Thing
7 Burn Bootloader SparkFun ESP32 Thing Plus

ZH1YI

Sk

File Edit Sketch Tools Help

Auto Format Cirl+T
Archive Sketch
LessontTelegr Fix Encoding & Reload

31 Manage Libraries... Ctrl+Shift+1
5 Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L
4 // Ha WiFi101 / WiFININA Firmware Updater
5 void [Board: "ESP32 Dev Module® >
& Ser 921600

Upload Speed: "115200" /
PU Frequency: "240MHz (Wik/BT)" i @ 115200
Flash Frequenc: "80MHz" b 256000

Flash Mode: "QIO"] 230400

o ; [Elzsh size: amte zamoy i 512000
a

- - Partition Scheme: "Default 4MB with spiffs (1.2MB APP/1.5MB SPIFFS)" >
e S| Core Debug Level: "None® >
42 1 PSRAM: "Disabled” >
43 Port: "COMS8" > 7
44 Get Board Info

45 } Programmer >
46 Burn Bootloader

47 /7 Print the received message

48 String text = bot.messages[i].text;

49 Serial.println(text);

String from name = bot.messages [1] -from name;

Go to your Telegram account and open a conversation with your bot. Send the
following commands and see the bot responding:

/start shows the welcome message with the valid commands.
/led_on turns the LED on.

/led_off turns the LED off.

/state requests the current LED state.

Welcome, Sara
Use the following commands to control
YOUur outputs.

on o turm GPIO ON
f to turn GPIO OFF
ate to request current GPIO state

LED state set to ON

LED is ON

LED state set to OFF

LED is OFF

36

ZHIY 88

The on-board LED should turn on and turn off accordingly (the ESP8266 on-board
LED works in reverse, it’s off when you send /led_on and on when you send
/led_off).

o :ra'i
. 30 u‘ﬁ pas A1? e i
q il
7o 5'” i R -

= |
BSs ?-:-*ﬁ 2008

At the same time, on the Serial Monitor you should see that the ESP is receiving the
messages.

@ comsa —] b e

Send

/led_on

got response
handleNewMessages
a

/led off

got response
handleNewMessages
al

/led off

got response
handleNewMessages
a

/led_on

got response
handleNewMessages
al

/led off

w

[futeseroll []Shos timestamp Newline ~ |115200 baud Clear output

37

X

ZHIYIS8E

Lesson2 ESP32: Control Outputs with Web Server and a

Physical Button Simultaneously

This tutorial shows how to control the ESP32 outputs using a web server and a
physical button simultaneously. The output state is updated on the web page

whether it is changed via physical button or web server.

Project Overview:

Let’s take a quick look at how the project works.

ESP Web Server €--- 9Eciafe_m_,e_b_p?ge_ S— .

.

gt 00 . e 6

«© Physical

pushbutton

ESP32/ESP8266
38

X

ZHIYIS8E

= The ESP32 hosts a web server that allows you to control the state of an
output;

= The current output state is displayed on the web server;

= The ESP is also connected to a physical pushbutton that controls the same
output;

= If you change the output state using the physical puhsbutton, its current state
is also updated on the web server.

In summary, this project allows you to control the same output using a web server
and a push button simultaneously. Whenever the output state changes, the web

server is updated.

Parts Required
Here's a list of the parts to you need to build the circuit:

ESP32 (read Best ESP32 Dev Boards)
5 mm LED

330 Ohm resistor

Pushbutton

10k Ohm resistor

Breadboard

Jumper wires

ESP32 Schematic
Note: The pin interface of the board should be checked with the actual

board interface before connecting and energizing.

e & & & e & & 8 8

® e o o e ® e e e e
. e & & & @ e & & 8 8 L
. e @& & & 0 e & & & L
G ¢ ¢ ¢ Agagn e e ¢ e . e
L L I . e 8 8 9 L
Jhl— j!___Eo ¢ o0 o

L I L * & & & @
L) . ® e e e ..
L L L e & & & @ L
L LI ® e e 0 .o
e & & & @ e & & 8 L
LI) ® e e 0 .o

e & & & @ L

.lj.l_u—tot L)
e & & & @ e & & & @ L
e & & & e & & 8 L
e e s 0 e e s ..
e & & & e & & 8 L

e e s 0 e 0
e & & & @ e & & 8 @ L
e e s 0 “ e s ..
. e 8 o 0 e & & & L
© e o o e ® e e oo .
L e & & & 8 e & & 8 8 L

39

YA

ZHIYIS8E

Installing Libraries — Async Web Server:

To build the web server you need to install the following libraries:

ESP32: install the ESPAsyncWebServer and the AsyncTCP libraries.

ESP8266: install the ESPAsyncWebServer and the ESPAsyncTCP libraries.

These libraries aren’t available to install through the Arduino Library Manager, so you
need to copy the library files to the Arduino Installation Libraries folder. Alternatively,
in your Arduino IDE, you can go to Sketch > Include Library > Add .zip Library and

select the libraries you’ve just downloaded.

Code:

// Import required libraries#ifdef ESP32

#include <WiFi.h>

#include <AsyncTCP.h>#else

#include <ESP8266WiFi.h>

#include <ESPAsyncTCP.h>#endif#include <ESPAsyncWebServer.h>
// Replace with your network credentialsconst char* ssid =
"REPLACE_WITH_YOUR _SSID";const char* password =
"REPLACE_WITH_YOUR_PASSWORD";
const char* PARAM_INPUT_1 = "state";
const int output = 2;const int buttonPin = 4;
// Variables will change:int ledState = LOW; // the current state
of the output pinint buttonState; // the current reading from
the input pinint lastButtonState = LOW; // the previous reading from
the input pin
// the following variables are unsigned longs because the time, measured
in// milliseconds, will quickly become a bigger number than can be stored
in an int.unsigned long lastDebounceTime =0©; // the last time the output

pin was toggledunsigned long debounceDelay = 50; // the debounce time;
increase if the output flickers

40

ZH1YI

Sk

m)ﬂ

// Create AsyncWebServer object on port 80

AsyncWebServer server(80

const char index_html|[| PROGMEM = R"rawliteral(<!DOCTYPE
HTML><html><head>

<title>ESP Web Server</title>

<meta name="viewport" content="width=device-width, initial-scale=1">

<style>

html {font-family: Arial; display: inline-block; text-align
center

h2 {font-size: 3.0rem

p {font-size: 3.0rem

body {max-width: 600px; margin:@px auto; padding-bottom: 25px

switch {position: relative; display: inline-block; width: 120px
height: 68px

switch input {display: none

slider {position: absolute; top: 0; left: 0; right: 0; bottom: ©
background-color: #ccc; border-radius: 34px

slider:before {position: absolute; content: ""; height: 52px; width
52px; left: 8px; bottom: 8px; background-color: #fff
-webkit-transition: .4s; transition: .4s; border-radius: 68px

input:checked+.slider {background-color: #2196F3

input:checked+.slider:before {-webkit-transform: translateX(52px
-ms-transform: translateX(52px); transform: translateX(52px

</style></head><body>

<h2>ESP Web Server</h2>

%BUTTONPLACEHOLDER%<script>function toggleCheckbox(element

41

X

ZHIYIS8E

var xhr = new XMLHttpRequest();

if(element.checked){ xhr.open("GET", "/update?state=1", true); }

else { xhr.open("GET", "/update?state=0", true); }

xhr.send();}

setInterval(function () {

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

var inputChecked;

var outputStateM;

if(this.responseText == 1){

inputChecked = true;
outputStateM = "On";
}
else {
inputChecked = false;
outputStateM = "Off";
}

document.getElementById("output™).checked = inputChecked;

document.getElementById("outputState™).innerHTML = outputStateM;

i

xhttp.open("GET", "/state", true);

42

A

ZHIYISBE

xhttp.send();}, 1000) ;</script></body></html>)rawliteral”;
// Replaces placeholder with button section in your web page
String processor(const String& var){
//Serial.println(var);
if(var == "BUTTONPLACEHOLDER"){
String buttons ="";
String outputStateValue = outputState();
buttons+= "<h4>Output - GPIO 2 - State </h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"output\"

outputStateValue + "></label>";

return buttons;

return String();}

String outputState(){
if(digitalRead(output)){

return "checked";

else {

return R

return "";}

void setup(){

43

\‘a'/

ZHIY 88

// Serial port for debugging purposes

Serial.begin(115200);

pinMode(output, OUTPUT);
digitalWrite(output, LOW);

pinMode(buttonPin, INPUT);

// Connect to Wi-Fi

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(1000) ;

Serial.println("Connecting to WiFi..");

// Print ESP Local IP Address

Serial.println(WiFi.localIP());

// Route for root / web page
server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){

request->send P(200, "text/html", index_html, processor);

s

// Send a GET request to <ESP_IP>/update?state=<inputMessage>

44

X

ZHIYIS8E

server.on("/update”, HTTP_GET, [] (AsyncWebServerRequest *request) {

String inputMessage;

String inputParam;

// GET inputl value on <ESP_IP>/updaterstate=<inputMessage>

if (request->hasParam(PARAM INPUT 1)) {
inputMessage = request->getParam(PARAM_INPUT_1)->value();
inputParam = PARAM_INPUT 1;
digitalWrite(output, inputMessage.toInt());

ledState = !ledState;

}

else {
inputMessage = "No message sent";
inputParam = "none";

}

Serial.println(inputMessage);
request->send (200, "text/plain", "OK");

1)

// Send a GET request to <ESP_IP>/state
server.on("/state", HTTP_GET, || (AsyncWebServerRequest *request) {

request->send (200, "text/plain",
String(digitalRead(output)).c_str());

})s

45

X

ZHIYISBE

// Start server

server.begin();}

void loop() {

// read the state of the switch into a local variable:

int reading = digitalRead(buttonPin);

// check to see if you just pressed the button
// (i.e. the input went from LOW to HIGH), and you've waited long enough

// since the last press to ignore any noise:

// If the switch changed, due to noise or pressing:
if (reading != lastButtonState) {
// reset the debouncing timer

lastDebounceTime = millis();

if ((millis() - lastDebounceTime) > debounceDelay) {

// whatever the reading is at, it's been there for longer than the
debounce

// delay, so take it as the actual current state:

// if the button state has changed:

if (reading != buttonState) {

46

DR

Sk

ZH1YI

buttonState = reading

// only toggle the LED if the new button state is HIGH
if (buttonState == HIGH

ledState = !ledState

// set the LED:

digitalWrite(output, ledState

// save the reading. Next time through the loop, it'll be the
lastButtonState:

lastButtonState = reading

You only need to enter the network credentials (SSID and password), and
the web server will work immediately. This code is compatible with
ESP32 and ESP8266 boards and controls GPIO 2-you can change the code

to control any other GPIO.

47

4

A

ZHIYISE

How the Code Works
We've already explained in great details how web servers like this work
in previous tutorials (DHT Temperature Web Server), so we’ll just take a

look at the relevant parts for this project.

Network Credentials
As said previously, you need to insert your network credentials in the

following lines:

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_PASSWORD";

Button State and Output State
The ledState variable holds the LED output state. For default, when the

web server starts, it is LOW.

int ledState = LOW; // the current state of the output pin

The buttonState and lastButtonState are used to detect whether the

pushbutton was pressed or not.

int buttonState // the current reading from the input pinint
lastButtonState = LOW; // the previous reading from the input pin

48

N
ZHIYI\;EB

£

Button (web server)
We didn’t include the HTML to create the button on the the index_html
variable. That’s because we want to be able to change it depending on

the current LED state that can also be changed with the pushbutton.

So, we’ve create a placeholder for the button %BUTTONPLACEHOLDER%
that will be replaced with HTML text to create the button later on the

code (this is done in the processor() function).

h2>ESP Web Server</h2

%BUTTONPLACEHOLDER?%

processor()
The processor() function replaces any placeholders on the HTML text
with actual values. First, it checks whether the HTML texts contains any

placeholders %BUTTONPLACEHOLDER%.

if(var == "BUTTONPLACEHOLDER"

Then, call the outputState() function that returns the current output

state. We save it in the outputStateValue variable.

String outputStateValue = outputState

After that, use that value to create the HTML text to display the button

with the right state:

49

ZHIYIS8E

buttons+= "<h4>Output - GPIO 2 - State </h4><label class=\"switch\"><input
type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"output\" " +
outputStateValue + "></label>"

HTTP GET Request to Change Output State (JavaScript)
When you press the button, the toggleCheckbox() function is called. This

function will make a request on different URLs to turn the LED on or off.

function toggleCheckbox(element
var xhr = new XMLHttpRequest
if(element.checked){ xhr.open("GET", "/update?state=1", true
else { xhr.open("GET", "/update?state=0", true

xhr.send

To turn on the LED, it makes a request on the /update?state=1 URL:

if(element.checked){ xhr.open("GET", "/update?state=1", true

Otherwise, it makes a request on the /update?state=0 URL.

HTTP GET Request to Update State (JavaScript)
To keep the output state updated on the web server, we call the
following function that makes a new request on the /state URL every

second.

50

X

ZHIYIS8E

setInterval(function () {
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {
if (this.readyState == 4 && this.status == 200) {
var inputChecked;
var outputStateM;

if(this.responseText == 1){

inputChecked = true;
outputStateM = "On";
}
else {

inputChecked = false;

outputStateM

"Off";

document.getElementById("output”).checked = inputChecked;

document.getElementById("outputState™).innerHTML = outputStateM;

}s

xhttp.open("GET", "/state", true);

xhttp.send();}, 1000) ;

51

X

ZHIYIS8E

Handle Requests
Then, we need to handle what happens when the ESP32 or ESP8266

receives requests on those URLs.

When a request is received on the root / URL, we send the HTML page as

well as the processor.

server.on("/", HTTP_GET AsyncWebServerRequest *request

request->send P(200, "text/html", index_html, processor

The following lines check whether you received a request on the
/update?state=1 or /update?state=0 URL and changes the ledState
accordingly.
server.on("/update”, HTTP_GET AsyncWebServerRequest *request
String inputMessage
String inputParam
// GET inputl value on <ESP_IP>/update?state=<inputMessage>
if (request->hasParam(PARAM_INPUT_1
inputMessage = request->getParam(PARAM_INPUT_1)->value
inputParam = PARAM_INPUT_1
digitalWrite(output, inputMessage.tolnt

ledState = !ledState

else

52

ZH1YI

Sk

]

inputMessage = "No message sent”

inputParam = "none"

Serial.println(inputMessage

request->send(200, "text/plain", "OK"

When a request is received on the /state URL, we send the current

output state:

server.on("/state", HTTP_GET AsyncWebServerRequest *request

request->send(200, "text/plain"
String(digitalRead(output c_str

loop()

In the loop(), we debounce the pushbutton and turn the LED on or off

depending on the value of the ledState variable.

digitalWrite(output, ledState

Demonstration
Upload the code to your ESP32 or ESP8266 board.
Then, open the Serial Monitor at a baud rate of 115200. Press the

on-board EN/RST button to get is IP address.

53

ZHIYIBE

& coms — O b4

| Send
Connecting to WiFi.. -
Connecting to WiFi..

192.168.1.76

T —————————

W

[Autoscrall] Show timestamp BothML &CR ~ | |115200baud + Clear output

Open a browser on your local network, and type the ESP IP address. You

should have access to the web server as shown below.

@ 102168176 x <+
« C @ Notsecure | 192.168.1.76 w

ESP Web Server

Output - GPIO 2 - State Off

You can toggle the button on the web server to turn the LED on.

54

A

ZHIYISBE

@ 192166176 x4+

<« C @ Notsecure | 192.168.1.76 '

ESP Web Server

Qutput - GPIO 2 - State On

@

You can also control the same LED with the physical pushbutton. Its state

will always be updated automatically on the web server.

Wrapping Up

In this tutorial you’ve learned how to control ESP32/ESP8266 outputs
with a web server and a physical button at the same time. The output
state is always updated whether it is changed via web server or with the

physical button.

55

X

ZHIYIS8E

Lesson 3 Telegram: ESP32 Motion Detection with Notifications

This tutorial shows how to send a notification to your Telegram account when the
ESP32 detects motion. As long as you can use your smartphone to access the

Internet, you will receive notifications no matter where you are. The ESP board will
be programmed using the Arduino IDE.

-
- - |
- -
- -
- et
ot L
- Py
- -
- -7
- -
- -
- -
= -
- S

) O O T e
il I| -

Project Overview:

This tutorial explains how to get notifications in your Telegram account when the
ESP32 detects motion.

v

EEERERLYL]

[ESP32] [Motion Detected!] [Send Message]

56

ZH1YI

Sk

An overview of how the project works:

You will create a Telegram bot for ESP32.

ESP32 is connected to the PIR motion sensor.

When the sensor detects movement, the ESP32 will send a warning message to your Telegram
account.

Whenever motion is detected, you will be notified in your Telegram account.

This is a simple project, but shows how to use Telegram in loT and home automation projects.
The idea is to apply the concepts learned in your own project to the project.

The introduction about telegram has been described in the first section of the project, and the
specific operations can be viewed by referring to the first section of the course by turning the

page.
Schematic diagram of the project:

For this project, you need to connect the PIR motion sensor to the ESP32 board.
Please follow the next schematic.

AAARRARAR

shelefefslale]s)

BOH O HOH M

GPIO 27

In this example, we connect the PIR motion sensor data pin to GPIO 27. You can use any other
suitable GPIO.

57

X

ZHIYIS8E

Telegram motion detection with notification-ESP32 code:

Whenever motion is detected, the following code will use your Telegram
bot to send a warning message to your Telegram account. In order to
make this sketch work for you, you need to insert network credentials

(SSID and password), Telegram Bot token and Telegram user ID.

#include <WiFi.h>
#include <WiFiClientSecure.h>
#include <UniversalTelegramBot.h>

#include <ArduinoJson.h>// Replace with your network credentialsconst
char* ssid = "REPLACE_WITH YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_PASSWORD";// Initialize
Telegram BOT#define BOTtoken

XXXXXXXXXX 2 XXXXXKXKXXXXKXKXKKKXXXXXXXXXXXXXXXXX™ // your Bot Token
(Get from Botfather)// Use @myidbot to find out the chat ID of an
individual or a group// Also note that you need to click "start" on a
bot before it can// message you

#tdefine CHAT_ID "XXXXXXXXXX"

WiFiClientSecure client;

UniversalTelegramBot bot(BOTtoken, client);

const int motionSensor = 27; // PIR Motion Sensor

bool motionDetected = false;// Indicates when motion is detectedvoid
IRAM_ATTR detectsMovement() {

//Serial.println("MOTION DETECTED!!!");
motionDetected = true; jvoid setup() {

Serial.begin(115200);

58

A

ZHIY 88

// PIR Motion Sensor mode INPUT_PULLUP
pinMode(motionSensor, INPUT_PULLUP);

// Set motionSensor pin as interrupt, assign interrupt function and
set RISING mode

attachInterrupt(digitalPinToInterrupt(motionSensor),
detectsMovement, RISING);

// Attempt to connect to Wifi network:

Serial.print("Connecting Wifi: ");

Serial.println(ssid);

WiFi.mode(WIFI_STA);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
Serial.print(".");

delay(500);

Serial.println("");

Serial.println("WiFi connected");

Serial.print("IP address: ");

Serial.println(WiFi.localIP());

bot.sendMessage(CHAT_ID, "Bot started up", "");}void loop() {

if(motionDetected){
bot.sendMessage(CHAT_ID, "Motion detected!!"™, "");
Serial.println("Motion Detected");

motionDetected = false;

59

ZH1YI

Sk

Code work explanation:

First import the required libraries.

#include <WiFi.h>
#include <WiFiClientSecure.h>
#include <UniversalTelegramBot.h>

#tinclude <ArduinoJson.h>

Network credentials

Insert your network credentials in the following variables.

const char* ssid = "REPLACE_WITH_YOUR_SSID"

const char* password = "REPLACE_WITH_YOUR_PASSWORD"
Telegram bot token

Insert the Telegram Bot token you got from Botfather into the BOT token.

#tdefine BOTtoken "XXXXXXXXXX : XXXXXXXXXXMXXXXXXKXXXXXXXXXXXXXXXXXX ™/ /
your Bot Token (Get from Botfather)

Telegram User ID

Insert your chat ID. The one you got from IDBot.

#tdefine CHAT_ID "XXXXXXXXXX"

Use the following method to create a new WiFi client WiFiClientSecure.
WiFiClientSecure client

Create a bot and use the token and client defined earlier.

UniversalTelegramBot bot(BOTtoken, client

60

DR

ZH1YI

Sk

Motion sensor:

Define the GPIO to which the motion sensor is connected.

const int motionSensor = 27; // PIR Motion Sensor

This motionDetected Boolean variable is used to indicate whether motion is detected. Set to the
wrong default.

bool motionDetected = false

detectorMovement ()

The detectsmovement() function is a callback function that will be executed when
motion is detected. In this case, it just changes the state motionDetected to true.

void IRAM_ATTR detectsMovement
//Serial.println("MOTION DETECTED!!!");

motionDetected = true

Setup()

Inside setup(), initialize the serial monitor.

Serial.begin(115200
PIR motion sensor interrupt

Set the PIR motion sensor to interrupt and set the detectorMovement() as a callback
function (when motion is detected, this function will be executed):

// PIR Motion Sensor mode INPUT_PULLUP

pinMode(motionSensor, INPUT_PULLUP);// Set motionSensor pin as
interrupt, assign interrupt function and set RISING mode

61

X

ZHIYIS8E

attachInterrupt(digitalPinToInterrupt(motionSensor), detectsMovement
RISING

Initialize Wi-Fi

Initialize Wi-Fi and use the previously defined SSID and password to connect ESP32
to your local network.

WiFi.mode(WIFI_STA
WiFi.begin(ssid, password);while (WiFi.status I'= WL_CONNECTED
delay(1000
Serial.println("Connecting to WiFi.."
Finally, send a message to indicate that the bot has started:
bot.sendMessage(CHAT_ID, "Bot started up", ""
Loop()
In the loop(), the detection state of motionDetected is changeable.
void loop
if(motionDetected

If it is true, it means motion is detected. Therefore, send a message to your Telegram
account stating that movement has been detected.

bot.sendMessage(CHAT_ID, "Motion detected!!", ""

Sending a message to the robot is very simple. You only need to use the method of
sending a message () Robot object, and pass the recipient's chat ID, message and
parsing mode as parameters.

bool sendMessage(String chat_id, String text, String parse_mode =

Finally, after sending the message, setting motionDetected can become wrong, so it
can detect motion again.

motionDetected = false

62

X

ZHIYIS8E

This is pretty much how the code works.
Example:

Upload the code to your ESP32 development board. Don't forget to go to "Tools">
"Development Board" and select the development board you are using. Go to
"Tools"> "Port", and then select the COM port your motherboard is connected to.

After uploading the code, please press the onboard EN/RST button of ESP32 to make
it start to run the code. You can then open the serial monitor to check what is
happening in the background.

When your motherboard boots up for the first time, it will send a message to your

Telegram account: "Boot has been activated". Then, move your hand to the front of
the PIR motion sensor and check if you have received a notification that motion has
been detected.

Bot started up

Motion detected!!
Motion detected!!

Motion detected!!

At the same time, this is what you should get on the serial monitor.

& coms - | X

Send
Lik_arv:uxuu,q_arv:uxuu,a_arv:Uxuu,csu_arv:uxuu,na_arv:uxuu,wp_arA
mode :DIO, clock diwv:1
load:0x3fff0018, 1len:4
load:0x3f£ff001c,len:1216
ho 0 tail 12 roocm 4
load:0x40078000,1en:9720
ho 0 tail 12 room 4
load:0x40080400, len:6352
entry 0x400806b8
Connecting Wifi: MEO-D32A40

WiFi connected
IP address: 192.168.1.114
Motion Detected

W
< >

[Autoscroll [] Show timestamp Newline ~ | |115200baud ~ Clear output

63

X

ZHIYIS8E

Lesson 4 Use ESP32 with DHT11 temperature and humidity sensor

module

This tutorial introduces how to use DHT11 temperature and humidity sensor with ESP32 using
Arduino IDE. We will quickly introduce these sensors, pinouts, wiring diagrams, and finally the
Arduino sketches.

schematic diagram:
Connect the DHT11 sensor to the ESP32 development board as shown in the figure
below.

GND P13 SD2 SD3 CND 5V

64

YA

ZHIYIS8E

In this example, we connect the DHT data pin to GPIO 4. However, you
can use any other appropriate numeric pin.

Installing Libraries:

To read from the DHT sensor, we’ll use the DHT library from Adafruit. To use this
library you also need to install the Adafruit Unified Sensor library. Follow the next
steps to install those libraries.

Open your Arduino IDE and go to Sketch > Include Library > Manage Libraries. The
Library Manager should open.

Search for “DHT” on the Search box and install the DHT library from Adafruit.

€8 Library Manager X
Type |Al w | Topic |All ~ | |DHT
the basic aspects of Arduing during short workshops. -
Merg info

DHT sensor library by Adafruit Version 1.2.4 INSTALLED
Arduine library for DHT11, DHT22, etc Temp & Humidity Sensors Arduine library far DHTL1, DHT22, ate Temp & Humidity Sensors

Mere info

DHT sensor library for ESPx by beegee tokyo

Arduino ESP library for DHT11, DHT22, etc Temp & Humidity Sensors Optimized libray to match ESP32 requiremants. Last
changes: Use comect fizld separator in keywords. txt.

More info

Version 1.0.9 ~ | | Instal

Grove Temperature And Humidity Senser by Scecd Studio

Arduino library to control Grove Temperature And Humidity Sensor, it contains chip DHT11 AM2202. This temperature & humidity
sensor provides 2 pre-calibrated digital cutput. A unigue capacitive sensor element measures relative humidity and the

temperature iz meazured by & negative temperature coefficient (NTC) thermistor. It has axcallent reliability and long term

stability.

More info b

Closs

After installing the DHT library from Adafruit, type “Adafruit Unified Sensor” in the search box.

Scroll all the way down to find the library and install it.

& Library Manager x

Type (Al v | Topc Al v adafruit unified sersor|

wrmy v e [P R UIEU EEITILEY R YRR, YL LT UG LU L S, T e
Adafruit's Unified Sensar Library.

EEI’ ﬂtﬂ

-~

Adafruit LSM303DLHC by Adafruit

Unified sensor driver for Adafruit’s LSM303 Breakout (| + neter) Unified sensor driver for Adafruit's
LSM303 Breakout (Accaleromater + Magnaetomater)

More info

Adafruit TSL2361 Adafruit
Unified sensor driver for Adafruit’s TSL2561 breakouls Unifiad sensor driver for Adafruit’s TSL2561 breakouts
More info

Adafruit Unified Sensor by Adafruit Version 1.0.2 INSTALLED
Required for all Adafruit Unified Sensor based libraries. & unified sensor abstraction layer usad by many Adafruit senser libraries.
Mare info

Selact version Instal Upsdate

65

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/Adafruit_Sensor

DR

ZH1YI

1]

U

After installing the libraries, restart your Arduino IDE.

How the Code Works

First, you need to import the DHT library:

#include "DHT.h"
Then, define the digital pin that the DHT sensor data pin is connected to. In this case,

it’s connected to GPIO 4.

#tdefine DHTPIN 4 // Digital pin connected to the DHT sensor

Then, you need to select the DHT sensor type you’re using. The library supports
DHT11, DHT22, and DHT21. Uncomment the sensor type you’re using and comment
all the others. In this case, we're using the DHT11 sensor.

#define DHTTYPE DHT11 // DHT 11

//#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

//#define DHTTYPE DHT21 // DHT 21 (AM2301)

Create a DHT object called dht on the pin and with the sensor type you’ve specified

previously.
DHT dht(DHTPIN, DHTTYPE);
In the setup(), initialize the Serial debugging at a baud rate of 9600, and print a

message in the Serial Monitor.
Serial.begin(9600);

Serial.printIn(F("DHTxx test!"));

Finally, initialize the DHT sensor.

dht.begin();

The loop() starts with a 2000 ms (2 seconds) delay, because the DHT22
maximum sampling period is 2 seconds. So, we can only get readings
every two seconds.

delay(2000);

The temperature and humidity are returned in float format. We create

66

X

ZHIYIS8E

float variables h, t, and f to save the humidity, temperature in Celsius and
temperature in Fahrenheit, respectively.
Getting the humidity and temperature is as easy as using
the readHumidity() and readTemperature() methods on the dht object,
as shown below:
float h = dht.readHumidity(); // Read temperature as Celsius (the default)
float t = dht.readTemperature();
If you want to get the temperature in Fahrenheit degrees, you need to
pass the true parameter as argument to the readTemperature() method.
float f = dht.readTemperature(true);
There’s also an if statement that checks if the sensor returned valid
temperature and humidity readings.
if (isnan(h) | | isnan(t) | | isnan(f)) {
Serial.printIn(F("Failed to read from DHT sensor!"));

return;
After getting the humidity and temperature, the library has a method
that computes the heat index. You can get the heat index both in Celsius
and Fahrenheit as shown below:
// Compute heat index in Fahrenheit (the default)
float hif = dht.computeHeatindex(f, h); // Compute heat index in Celsius
(isFahreheit = false)

float hic = dht.computeHeatIndex(t, h, false);

67

X

ZHIYIS8E

Finally, print all the readings on the Serial Monitor with the following
commands:

Serial.print(F("Humidity: "));

Serial.print(h);

Serial.print(F("% Temperature: "));
Serial.print(t); Serial.print(F("°C"));
Serial.print(f); Serial.print(F("°F Heat index: "));
Serial.print(hic);

Serial.print(F("°C"));

Serial.print(hif);

Serial.printIn(F("°F"));

Demonstration

Upload the code to your ESP32 board. Make sure you have the right board and COM
port selected in your Arduino IDE settings.
After uploading the code, open the Serial Monitor at a baud rate of 9600. You should

get the latest temperature and humidity readings in the Serial Monitor every two

seconds.
& comr - o x
| Send
Humidity: 85.40% Temperature: 20.40°C 68.72"F Heat index: 20.73°C 69.31"F ~
Humidity: 85.40% Temperature: 20.50°C 68.90°F Heat index: 20.84°C €9.50°F
Hamidity: §5.40% Temperature: 20.40°C 68.72"F Heat index: 20.73°C 69.31°F
Humidicy: 85.40% Temperature: 20.40°C 68.72°F Heat index: 20.73°C 69.31°F
Humidity: 85.40% Temperature: 20.50°C 68.50"F Heat index: 20.84°C 69.50"F
Humidity: 85.40% Temperature: 20.50°C 68.90°F Heat index: 20.84°C 69.50"F
Humidity: 85.30% Temperature: 20.40°C 68.72°F Heat index: 20.72°C 69.30°F
Humidicy: 85.30% Temperature: 20.50°C 68.%0°F Heat index: 20.83°C 69.50°F
Homidity: 85.30% Temperature: 20.50°C 68.90"F Heat index: 20.83°C 69.50"F
Humidity: 85.20% Temperature: 20.40°C 68.72°F Heat index: 20.72°C 69.30"F
Humidity: 85.30% Temperature: 20.50°C €8.90°F Heat index: 20.83°C €9.50°F
Humidicty: £§5.20% Temperature: 20.40°C 68.72°F Heat index: 20.72°C 69.30°F
Homidirty: 85.20% Temperature: 20.50°C 68.90°"F Heat index: 20.83°C 69.49°F
Humidity: 85.20% Temperature: 20.50°C 68.50"F Heat index: 20.83°C 69.45%"F
v
] Butoscroll [] Show timestamp Newline ~ 9600 baud - Clear output

68

DR

ZH1YI

Sk

Lesson 5 : Using esp32 to control ssd1306 OLED display

This tutorial introduces how to use esp32 to control OLED display to display
characters. You can modify the code according to your own idea to make OLED
display what you want to display. The ESP board will use Arduino IDE for
programming.

Pin display of esp32 development board:

EN
Input only | [TRTE.GPIDD || Sensor VP || ADCE CHO || GPIO36

GPIO23 || VISP MO
GPO22 Resa |

Ingut only | (CRTC_GPIOD | Sensor Vi |_ADCICH3 | GPIO39 | B GPIO1 | UART O Tx
Input oy || RTE GPIDS || ADCICHE || GPI034 | B GPID3 | | UART O RX
Input only |(TRTE GRIOS | ADC1CHT | [GPO3S | I8 GPIO21 | [THICSDR |
ATC_GMOS | [Tolcms | aocices || ooz | I GPIO19 | [VSPI MISD
_RTC_GMOS || TOUCHE || ADcicws ([GPIO33 | [GFIO1E | vImow |
RTC_GPios BALY Apcacns | oho2s | M GPIOS || wsRicsD
TRTC GPOT | [DACZ | [aDczcns | [GPIOZG6 | [GPIO1T | UART 2 Tx
R GRONT || TOUCH? || aDC2CHT | | GPI027 | I GPID16. | | UART 2 RX
HIC i || WSPICLE | [TTGUCHe | [ADcone || GPIO14 | I GPIO4 | ADCI CHD | [TOUCHD | [T RTC GRoM0
RIC_GROLS || H5P1 MISC | [Folcks || ADC2oWs || GRI012 | - GPIO2 || ADCZ CH2 || TOUCH2 HIE_GhoL
RIC GRONA || MSM MOSI | [TOUCHS | | ADCZ cHa || GPIO13 | I GPIO1S | [ApC2 on3 |[TOUCHS || MEMCS0 | [TRIC GRoE.
« [SHROSOEY crios | M GPIOD | Apc2 oWl || ToweHl | [RIC GG
+ [EWRBDR) GPio10 | Id Grios | [S0USELN *
+ [ESEfenE) croly | P07 | (E0GESaN «
| GnD J * GPios | TSCRIEED «
. TR

69

ZHIY 88

Schematic diagram of the project:

For this project, you need to connect the OLED screen pins to the esp32 board. Follow the next

schematic.
ESP32 SSD1306
GND GND
3.3V VCC
GP1021 (SDA) SDA
GPI022 (SCL) SCL

n this example, we connect the pin data pin and clock pin of OLED screen to gpio21 and gpio22.
Note that wrong connection is not allowed. Wrong connection will cause OLED screen not to be
displayed.

OLED display code:

First, we need to include the wire. H library, which is required for 12C
communication with OLED displays. We also need to include the ssd1306. H
library, which we will use to interact with devices

70

X

ZHIYIS8E

#include <Wire.h> // Only needed for Arduino 1.6.5 and earlier
#include "SSD13@6Wire.h" // legacy include: “#include "SSD1306.h""
#include "OLEDDisplayUi.h"

#include "images.h"

The constructor of the class mentioned below receives the 12C address of the
device as the first parameter, namely, 0x3c. As the second and third
parameters, the constructor receives the number of SDA and SCL pins,
respectively. In our example, as shown in the diagram, we use pins 21 and 22
of esp32.

SSD13@6Wire display(@x3c, 21, 22);

Use the library to display the string you want to display.

OLEDDisplayUi ui (&display);

Frame 1 function, we display a logo.

void drawFramel(OLEDDisplay *display, OLEDDisplayUiState* state, intl16_t x, intl6
_ty)
{

display->drawXbm(x + 34, y + 12, Logo_width, Logo_height, Logo_bits);

Frame 2 function, we show "Hello word".

void drawFrame2(OLEDDisplay *display, OLEDDisplayUiState* state, intl16_t x, int16
_ty) o

display->setTextAlignment(TEXT_ALIGN_LEFT);

display->setFont(ArialMT_Plain_24);

display->drawStringMaxWidth(e + x, 10 + y, 128, "Hello Word");

Frame 3 function, we show some titles.

void drawFrame3(OLEDDisplay *display, OLEDDisplayUiState* state, intl6_t x, intl6
_ty) |
display->setTextAlignment(TEXT_ALIGN_LEFT);
display->setFont(ArialMT_Plain_24);
display->drawString(@ + x, @ + y, "Zhi Yi");
display->setFont(ArialMT_Plain_10);

display->drawString(@ + x, 24 + y, "science");

71

X

ZHIYIS8E

display->setFont(ArialMT_Plain_10);

display->drawString(@ + x, 34 + y, " and technology");

Frame 4 function, we show some introduction.

void drawFrame4(OLEDDisplay *display, OLEDDisplayUiState* state, intl6_t x, intil6
_ty) |

display->setTextAlignment (TEXT_ALIGN_LEFT);

display->setFont(ArialMT_Plain_10);

display->drawStringMaxWidth(@ + x, 10 + y, 128, "Using Arduino ide to compile e
sp32 project and make OLED LCD display");

}

Next, we loop through the contents of each function.

FrameCallback frames[] = { drawFramel, drawFrame2, drawFrame3,drawFrame4,};

// how many frames are there?

int frameCount = 4;

72

A

ZHIYISBE

Lesson 6 How to use ESP32 to control a relay module

Introducing Relays

A relay is an electrically operated switch and like any other switch, it that can be turned on or off,
letting the current go through or not. It can be controlled with low voltages, like the 3.3V
provided by the ESP32 GPIOs and allows us to control high voltages like 12V, 24V or mains voltage

(230V in Europe and 120V in the US).

There are different relay modules with a different number of channels. You can find relay
modules with one, two, four, eight and even sixteen channels. The number of channels
determines the number of outputs we’ll be able to control.

B
%{v N

There are relay modules whose electromagnet can be powered by 5V and with 3.3V.
Both can be used with the ESP32 — you can either use the VIN pin (that provides 5V)
or the 3.3V pin.

Additionally, some come with built-in optocoupler that add an extra “layer” of
protection, optically isolating the ESP32 from the relay circuit.

73

A

ZHIYISBE

Relay Pinout

For demonstration purposes, let's take a look at the pinout of a 2-channel relay module. Using
a relay module with a different number of channels is similar.

HL-52S V1.e

2 relay module

On the left side, there are two sets of three sockets to connect high voltages, and the
pins on the right side (low-voltage) connect to the ESP32 GPIOs.

Mains Voltage Connections

74

X

ZHIYIS8E

The relay module shown in the previous photo has two connectors, each with three

sockets: common (COM), Normally Closed (NC), and Normally Open (NO).

= COM: connect the current you want to control (mains voltage).

* NC (Normally Closed): the normally closed configuration is used when you
want the relay to be closed by default. The NC are COM pins are connected,
meaning the current is flowing unless you send a signal from the ESP32 to the
relay module to open the circuit and stop the current flow.

* NO (Normally Open): the normally open configuration works the other way
around: there is no connection between the NO and COM pins, so the circuit

is broken unless you send a signal from the ESP32 to close the circuit.

Control Pins

The low-voltage side has a set of four pins and a set of three pins. The first set
consists of VCC and GND to power up the module, and input 1 (IN1) and input 2 (IN2)

to control the bottom and top relays, respectively.

If your relay module only has one channel, you’ll have just one IN pin. If you have

four channels, you’ll have four IN pins, and so on.

The signal you send to the IN pins, determines whether the relay is active or not. The
relay is triggered when the input goes below about 2V. This means that you’ll have

the following scenarios:

75

* Normally Closed configuration (NC):

» HIGH signal — current is flowing

= LOW signal —current is not flowing

= Normally Open configuration (NO):

* HIGH signal — current is not flowing

= LOW signal — current in flowing

* You should use a normally closed configuration when the current should be
flowing most of the times, and you only want to stop it occasionally.

= Use a normally open configuration when you want the current to flow

occasionally (for example, turn on a lamp occasionally).

Power Supply Selection:

JD-UCC UCC GND GND Nl IN2 UCC

The second set of pins consists of GND, VCC, and JD-VCC pins. The JD-VCC pin powers
the electromagnet of the relay. Notice that the module has a jumper cap connecting

the VCC and JD-VCC pins; the one shown here is yellow, but yours may be a different
color.

With the jumper cap on, the VCC and JD-VCC pins are connected. That means the
relay electromagnet is directly powered from the ESP32 power pin, so the relay
module and the ESP32 circuits are not physically isolated from each other.

Without the jumper cap, you need to provide an independent power source to
power up the relay’s electromagnet through the JD-VCC pin. That configuration
physically isolates the relays from the ESP32 with the module’s built-in optocoupler,
which prevents damage to the ESP32 in case of electrical spikes.

76

X

ZHIYIS8E

Wiring a Relay Module to the ESP32

Connect the relay module to the ESP32 as shown in the following diagram. The diagram shows

wiring for a 2-channel relay module, wiring a different number of channels is similar.

Alternatively, you can use a 12V power source to control 12V appliances.

| w—
—

Sl

- -
L
frt .
~ SEEEEEELE
w B

e TA

=1
B
(=] #]

AAARARAR

GPIO 26

In this example, we’re controlling a lamp. We just want to light up the lamp
occasionally, so it is better to use a normally open configuration.

Controlling a Relay Module with the ESP32 — Arduino Sketch

The code to control a relay with the ESP32 is as simple as controlling an LED or any
other output. In this example, as we’re using a normally open configuration, we need
to send a LOW signal to let the current flow, and a HIGH signal to stop the current
flow.

The following code will light up your lamp for 10 seconds and turn it off for another
10 seconds.

77

X

ZHIYISBE

const int relay = 26;

void setup() {
Serial.begin(115200);
pinMode(relay, OUTPUT); }

void loop() {
// Normally Open configuration, send LOW signal to let current flow
// (if you're usong Normally Closed configuration send HIGH signal)
digitalWrite(relay, LOW);
Serial.println("Current Flowing");

delay(5000);

// Normally Open configuration, send HIGH signal stop current flow
// (if you're usong Normally Closed configuration send LOW signal)
digitalWrite(relay, HIGH);

Serial.println("Current not Flowing");

delay(5000); }

78

DR

ZH1YI

Sk

Control Multiple Relays with ESP32 Web Server

vl

O @ iezisaim 0 i

ESP Web Server

Relay #2 - GPIO 26

Relay 23 - GMO 27

Relay &4 - GPIO 28

In this section, we’ve created a web server example that allows you to control as
many relays as you want via web server whether they are configured as normally
opened or as normally closed. You just need to change a few lines of code to define
the number of relays you want to control and the pin assignment.

To build this web server, we use the ESPAsyncWebServer library.

Installing the ESPAsyncWebServer library

Alternatively, in your Arduino IDE, you can go to Sketch > Include Library > Add .ZIP
library... and select the library you’ve just downloaded.

Installing the Async TCP Library for ESP32
Code:

// Import required libraries

#include "WiFi.h"

#include "ESPAsyncWebServer.h"

// Set to true to define Relay as Normally Open (NO)

79

https://github.com/me-no-dev/ESPAsyncWebServer

DR

ZH1YI

Sk

#define RELAY_NO true

// Set number of relays

#define NUM_RELAYS 5

// Assign each GPIO to a relay

int relayGPIOS[NUM_RELAYS] = {2, 26, 27, 25, 33};

// Replace with your network credentials
ConSt Char* SSid - "*************";

const char* password = "*¥* %%k ki,

const char* PARAM_INPUT_1 = "relay";

const char* PARAM_INPUT_2 = "state";

// Create AsyncWebServer object on port 80

AsyncWebServer server(80);

const char index_html[] PROGMEM = R"rawliteral(

<IDOCTYPE HTML><htmlI>

<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<style>

html {font-family: Arial; display: inline-block; text-align: center;}

80

DR

ZH1YI

1]

h2 {font-size: 3.0rem;}

p {font-size: 3.0rem;}

body {max-width: 600px; margin:0Opx auto; padding-bottom: 25px;}

.switch {position: relative; display: inline-block; width: 120px; height: 68px}
.switch input {display: none}

.slider {position: absolute; top: 0; left: O; right: 0; bottom: 0; background-color:
#ccc; border-radius: 34px}

.slider:before {position: absolute; content: ""; height: 52px; width: 52px; left:
8px; bottom: 8px; background-color: #fff; -webkit-transition: .4s; transition: .4s;
border-radius: 68px}

input:checked+.slider {background-color: #2196F3}

input:checked+.slider:before {-webkit-transform: translateX(52px);
-ms-transform: translateX(52px); transform: translateX(52px)}

</style>
</head>
<body>
<h2>ESP Web Server</h2>
%BUTTONPLACEHOLDER%
<script>function toggleCheckbox(element) {
var xhr = new XMLHttpRequest();

if(element.checked){ xhr.open("GET", "/update?relay="+element.id+"&state=1",
true); }

else { xhr.open("GET", "/update?relay="+element.id+"&state=0", true); }
xhr.send();
}</script>

</body>

81

DR

ZH1YI

Sk

</html>

Jrawliteral";

// Replaces placeholder with button section in your web page
String processor(const String& var){
//Serial.printin(var);
if(var == "BUTTONPLACEHOLDER"){
String buttons ="";
for(int i=1; i<=NUM_RELAYS; i++){
String relayStateValue = relayState(i);
buttons+="<h4>Relay #" + String(i) + " - GPIO " + relayGPIOs[i-1] +
"</h4><label class=\"switch\"><input type=\"checkbox\"

onchange=\"toggleCheckbox(this)\" id=\"" + String(i) + "\" "+ relayStateValue
+"></label>";

}

return buttons;

}

return String();

String relayState(int numRelay){
if(RELAY_NO){
if(digitalRead(relayGPIOs[numRelay-1])){

",

return ;

82

DR

ZH1YI

Sk

else {

return "checked";

}

else {
if(digitalRead(relayGPIOs[numRelay-1])){
return "checked";

}

else {

",

return "";

",

return"";

void setup(){
// Serial port for debugging purposes

Serial.begin(115200);

// Set all relays to off when the program starts - if set to Normally Open (NO), the
relay is off when you set the relay to HIGH

for(int i=1; i<=NUM_RELAYS; i++){
pinMode(relayGPIOsl[i-1], OUTPUT);

if(RELAY_NO){

83

DR

ZH1YI

Sk

digitalWrite(relayGPIOs[i-1], HIGH);
}
else{

digitalWrite(relayGPIOs[i-1], LOW);

// Connect to Wi-Fi

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(1000);

Serial.printIn("Connecting to WiFi..");

// Print ESP32 Local IP Address

Serial.printIn(WiFi.locallP());

// Route for root / web page
server.on("/", HTTP_GET, [J(AsyncWebServerRequest *request){

request->send_P(200, "text/html", index_html, processor);

1;

// Send a GET request to
<ESP_IP>/update?relay=<inputMessage>&state=<inputMessage2>

84

X

ZHIYIS8E

server.on("/update", HTTP_GET, [] (AsyncWebServerRequest *request) {
String inputMessage;
String inputParam;
String inputMessage?2;
String inputParamz2;
// GET inputl value on <ESP_IP>/update?relay=<inputMessage>

if (request->hasParam(PARAM_INPUT_1) &
request->hasParam(PARAM_INPUT_2)) {

inputMessage = request->getParam(PARAM_INPUT _1)->value();
inputParam = PARAM_INPUT_1;
inputMessage?2 = request->getParam(PARAM_INPUT_2)->value();
inputParam2 = PARAM_INPUT_2;
if(RELAY_NO)

Serial.print("NO ");

digitalWrite(relayGPIOs[inputMessage.tolnt()-1], linputMessage2.toint());

else{
Serial.print("NC");

digitalWrite(relayGPIOs[inputMessage.tolnt()-1], inputMessage2.toint());

else {
inputMessage = "No message sent";

inputParam = "none";

85

4

A

ZHIYIS8E

Serial.printIn(inputMessage + inputMessage2);
request->send(200, "text/plain", "OK");

1;

// Start server

server.begin();

void loop() {

Define Relay Configuration:

Modify the following variable to indicate whether you’re using your relays in normally open (NO)
or normally closed (NC) configuration. Set the RELAY_NO variable to true for normally open os set

to false for normally closed.
#define RELAY_NO true

Define Number of Relays (Channels)
You can define the number of relays you want to control on the NUM_RELAYS variable. For

demonstration purposes, we’re setting it to 5.

#define NUM_RELAYS 5

Define Relays Pin Assignment

In the following array variable you can define the ESP32 GPIOs that will control the
relays

int relayGPIOS[NUM_RELAYS] = {2, 26, 27, 25, 33};

86

X

ZHIYIS8E

The number of relays set on the NUM_RELAYS variable needs to match

the number of GPIOs assigned in the relayGPIOs array.

Network Credentials

Insert your network credentials in the following variables.

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_PASSWORD";

Wiring 8 Channel Relay to ESP32
For demonstration purposes, we’re controlling 5 relay channels. Wire the

ESP32 to the relay module as shown in the next schematic diagram.

GND VCC JD-VCC .

GPIO2

AARARRAAR

GRIOSS GPIO27

GPIO26

VIN

Demonstration

After making the necessary changes, upload the code to your ESP32.
Open the Serial Monitor at a baud rate of 115200 and press the ESP32 EN button to get its IP
address.

87

X

ZHIYIS8E

LESSON 7 How to use IR obstacle avoidance sensor on ESP32

In this article, | will write how to use evasive infrared sensor on ESP32.

His sensor can be used to detect objects or obstacles ahead using reflected infrared

light.

The sensor has 2 main parts, namely IR transmitter and IR receiver. The infrared
transmitter is obligated to emit infrared light. When it hits an object, the infrared
light will be reflected. The function of the infrared receiver is to receive infrared

reflections.

When the infrared receiver receives the reflected infrared light, the output will be
"low". When the infrared receiver does not receive the reflected infrared light, the

output will be "high".

There are 2 LED indicators in the sensor. Power indicator light and output indicator
light. If the module is powered by current, the power indicator LED will light up. If
there is an object in front of the sensor or infrared receiver to receive infrared light

reflection, the output indicator LED will light up.

88

ZH1YI

Sk

m)ﬂ

Use jumper wires to connect the IR sensor to the ESP32.

See the picture above or the description about this:

Infrared to ESP32

VCC ==> + 5 volts

Ground ==> ground

OUT ==> P2

Wiring diagram:

VCC

—l |GND
ouT

89

ZH1YI

DR

£

Code:

int pinIR = 2;

void setup(){
Serial.begin(115200);
pinMode(pinIR, INPUT);
Serial.printIn("Detect IR Sensor");
delay(1000);

}

void loop(){

int IRstate = digitalRead(pinIR);

if(IRstate == LOW){

Serial.printIn("Detected");

}

else if(IRstate == HIGH){
Serial.printin("Not Detected");

}

delay(1000);

90

A

ZHIYISBE

@ comss —] *

\ Send

WoT Dotooooo
Detected

Not Detected
Detected

Not Detected
Detected

Not Detected
Detected

Not Detected
Not Detected
Not Detected
Detected

Not Detected
Not Detected
Not Detected
Not Detected
Not Detected
Not Detected

[Autosersll []Shor timestamp [Herline ~ | 115200 baud | | Clear output

If you place an object in front of the sensor, the serial monitor will say "Detected".

if there is no object in front of the sensor, the monitor serial will say "Not Detected".

91

X

ZHIYIS8E

Lesson 8 How to use a photoresistor sensor on ESP32

In this lesson, | will show you how to interface ESP32 with a photoresistor (a type of
resistor whose resistance varies with the lighting level) and ESP32 to make the LED
light automatically. ESP32 is used to analyze the lighting level and turn the LED on or

off accordingly.

What are photoresistors?

Photo resistors, also known as light dependent resistors (LDR), are light sensitive devices most
often used to indicate the presence or absence of light, or to measure the light intensity. In the
dark, their resistance is very high, sometimes up to 1MQ, but when the LDR sensor is exposed to
light, the resistance drops dramatically, even down to a few ohms, depending on the light
intensity. LDRs have a sensitivity that varies with the wavelength of the light applied and are
nonlinear devices. They are used in many applications but are sometimes made obsolete by
other devices such as photodiodes and phototransistors. Some countries have banned LDRs

made of lead or cadmium over environmental safety concerns.

92

https://eepower.com/resistor-guide/resistor-fundamentals/ohms-law/

X

ZHIYIS8E

Light dependent resistor definition

Photo resistors are light sensitive resistors whose resistance decreases as the intensity of light
they are exposed to increases.

Characteristics

Types of photo resistors and working mechanisms

Based on the materials used, photo resistors can be divided into two types; intrinsic and extrinsic.
Intrinsic photo resistors use undoped materials such as silicon or germanium. Photons that fall on
the device excite electrons from the valence band to the conduction band, and the result of this
process are more free electrons in the material, which can carry current, and therefore less
resistance. Extrinsic photo resistors are made of materials doped with impurities, also called
dopants. The dopants create a new energy band above the existing valence band, populated by
electrons. These electrons need less energy to make the transition to the conduction band thanks
to the smaller energy gap. The result is a device sensitive to different wavelengths of light.
Regardless, both types will exhibit a decrease in resistance when illuminated. The higher the light
intensity, the larger the resistance drop is. Therefore, the resistance of LDRs is an inverse,
nonlinear function of light intensity.

Wavelength dependency

The sensitivity of a photo resistor varies with the light wavelength. If the wavelength is outside a
certain range, it will not affect the resistance of the device at all. It can be said that the LDR is not
sensitive in that light wavelength range. Different materials have different unique spectral
response curves of wavelength versus sensitivity. Extrinsic light dependent resistors are generally
designed for longer wavelengths of light, with a tendency towards the infrared (IR). When
working in the IR range, care must be taken to avoid heat buildup, which could affect
measurements by changing the resistance of the device due to thermal effects. The figure shown
here represents the spectral response of photoconductive detectors made of different materials,
with the operating temperature expressed in K and written in the parentheses.

10 1 :

. cds(300)/
g% PbS(195

I
s /—\
o
; PbS(300)
2>
©
3 1 Uq - PbSe(195)
Q
o PbSe(300)

1 08 | taviolet s;ﬂi':m infrared

0.1 1 10

Wavelength(um)

93

https://eepower.com/resistor-guide/resistor-fundamentals/temperature-coefficient-of-resistance/

ZH1YI

Sk

Wiring diagram:

AO DO GND VCC

Code:

//cosntants for the pins where sensors are plugged into.

const int sensorPin = 26;

const int ledPin =2;

//Set up some global variables for the light level an initial value.
int lightlnit; // initial value

int lightVal; // light reading

void setup()

{

// We'll set up the LED pin to be an output.

pinMode(ledPin, OUTPUT);

lightInit = analogRead(sensorPin);

//we will take a single reading from the light sensor and store it in the lightCal
//variable. This will give us a prelinary value to compare against in the loop
}
void loop()

{

lightVal = analogRead(sensorPin); // read the current light levels

//if lightVal is less than our initial reading withing a threshold then it is dark.

if(lightVal - lightlnit < 50)

{

digitalWrite (ledPin, HIGH); // turn on light

94

A

ZHIYISBE

}
//otherwise, it is bright

else

{
digitalWrite (ledPin, LOW); // turn off light

Experimental diagram:

95

	LESSON 7 How to use IR obstacle avoidance sensor o

